Multi-Level Dense Descriptor and Hierarchical Feature Matching for Copy-Move Forgery Detection

Xiuli Bi, Chi Man Pun, Xiao Chen Yuan

研究成果: Article同行評審

82 引文 斯高帕斯(Scopus)

摘要

In this paper, a Multi-Level Dense Descriptor (MLDD) extraction method and a Hierarchical Feature Matching method are proposed to detect copy-move forgery in digital images. The MLDD extraction method extracts the dense feature descriptors using multiple levels, while the extracted dense descriptor consists of two parts: the Color Texture Descriptor and the Invariant Moment Descriptor. After calculating the MLDD for each pixel, the Hierarchical Feature Matching method subsequently detects forgery regions in the input image. First, the pixels that have similar color textures are grouped together into distinctive neighbor pixel sets. Next, each pixel is matched with pixels in its corresponding neighbor pixel set through its geometric invariant moments. Then, the redundant pixels from previously generated matched pixel pairs are filtered out by the proposed Adaptive Distance and Orientation Based Filtering method. Finally, some morphological operations are applied to generate the final detected forgery regions. Experimental results show that the proposed scheme can achieve much better detection results compared with the existing state-of-the-art CMFD methods, even under various challenging conditions such as geometric transforms, JPEG compression, noise addition and down-sampling.

原文English
頁(從 - 到)226-242
頁數17
期刊Information Sciences
345
DOIs
出版狀態Published - 1 6月 2016
對外發佈

指紋

深入研究「Multi-Level Dense Descriptor and Hierarchical Feature Matching for Copy-Move Forgery Detection」主題。共同形成了獨特的指紋。

引用此