TY - JOUR
T1 - Robust lossless digital watermarking using integer transform with Bit plane manipulation
AU - Choi, Ka Cheng
AU - Pun, Chi Man
N1 - Publisher Copyright:
© 2015, Springer Science+Business Media New York.
PY - 2016/6/1
Y1 - 2016/6/1
N2 - In this paper, a robust lossless digital watermarking scheme based on a generalized integer transform in spatial domain is proposed. In the proposed method, data bits are hidden into the cover media by a reversible generalized integer transform with bit plane manipulation. With the reversible transform, data can be hidden in the cover media, and the stego media can be restored to its original form after extraction of the hidden data. In embedding procedure, adaptive bit plane manipulation is applied to increase robustness of the algorithm while keeps good visual quality. To further increase the robustness of the algorithm, we repeatedly embed watermark bits and use majority voting to decode the hidden information in extraction procedure. Furthermore, a threshold is introduced in the algorithm, which helps in choosing regions that would result lower variance for embedding, as regions with lower variance is more robust against JPEG compression. The proposed scheme is quite different from the existing robust lossless data hiding algorithms which are histogram-based. The performance of the proposed scheme is evaluated and compared with state-of-the-arts techniques respect to robustness, data payload capacity and peak signal-to-noise ratio (PSNR). In the experiments, the proposed method can embed more than 10000 bits into 512 by 512 grayscale and medical images, and has around 30 dB in PSNR. In case of small watermark with 100 bits, marked images can have PSNR above 60 dB and with 0.1 bpp in JPEG robustness in the best cases. Conclusively, the robustness of the proposed method is quite good, and the results of hiding capacity and imperceptibility are also satisfactory.
AB - In this paper, a robust lossless digital watermarking scheme based on a generalized integer transform in spatial domain is proposed. In the proposed method, data bits are hidden into the cover media by a reversible generalized integer transform with bit plane manipulation. With the reversible transform, data can be hidden in the cover media, and the stego media can be restored to its original form after extraction of the hidden data. In embedding procedure, adaptive bit plane manipulation is applied to increase robustness of the algorithm while keeps good visual quality. To further increase the robustness of the algorithm, we repeatedly embed watermark bits and use majority voting to decode the hidden information in extraction procedure. Furthermore, a threshold is introduced in the algorithm, which helps in choosing regions that would result lower variance for embedding, as regions with lower variance is more robust against JPEG compression. The proposed scheme is quite different from the existing robust lossless data hiding algorithms which are histogram-based. The performance of the proposed scheme is evaluated and compared with state-of-the-arts techniques respect to robustness, data payload capacity and peak signal-to-noise ratio (PSNR). In the experiments, the proposed method can embed more than 10000 bits into 512 by 512 grayscale and medical images, and has around 30 dB in PSNR. In case of small watermark with 100 bits, marked images can have PSNR above 60 dB and with 0.1 bpp in JPEG robustness in the best cases. Conclusively, the robustness of the proposed method is quite good, and the results of hiding capacity and imperceptibility are also satisfactory.
KW - Bit plane
KW - Generalized integer transform
KW - Lossless data hiding
KW - Robust reversible watermarking
KW - Threshold
UR - http://www.scopus.com/inward/record.url?scp=84928139804&partnerID=8YFLogxK
U2 - 10.1007/s11042-015-2596-3
DO - 10.1007/s11042-015-2596-3
M3 - Article
AN - SCOPUS:84928139804
SN - 1380-7501
VL - 75
SP - 6621
EP - 6645
JO - Multimedia Tools and Applications
JF - Multimedia Tools and Applications
IS - 11
ER -