Synergistic Effects of Pyrrosia lingua Caffeoylquinic Acid Compounds with Levofloxacin Against Uropathogenic Escherichia coli: Insights from Molecular Dynamics Simulations, Antibiofilm, and Antimicrobial Assessments

Yan Zhang, Fangfang Jiao, Derong Zeng, Xiang Yu, Yongqiang Zhou, Juan Xue, Wude Yang, Jingjing Guo

研究成果: Article同行評審

1 引文 斯高帕斯(Scopus)

摘要

Urinary tract infections (UTIs), primarily caused by uropathogenic Escherichia coli (UPEC), have high morbidity and recurrence rates. Resistance to levofloxacin hydrochloride (LEV), a commonly used treatment for UTIs, is increasingly problematic, exacerbated by biofilm formation mediated by interactions between cyclic di-GMP (c-di-GMP or CDG) and YcgR. In this study, we identified three caffeoylquinic acid compounds from Pyrrosia lingua—chlorogenic acid (CGA), sibiricose A5 (Si-A5), and 3-O-caffeoylquinic acid methyl ester (CAM)—that target YcgR through molecular docking. Biological assays revealed that combining these compounds with levofloxacin hydrochloride significantly enhanced antibacterial activity against standard UPEC strains in a concentration-dependent manner and clinically isolated UPEC strains. Notably, chlorogenic acid and sibiricose A5, when used with levofloxacin hydrochloride, enhanced intracellular c-di-GMP levels and swimming motility, significantly reduced YcgR gene expression, and effectively inhibited biofilm formation of UPEC at multiple time points. Additionally, molecular dynamics simulations elucidated the strong binding of these compounds to YcgR, underscoring the critical roles of residues, such as Arg118 and Asp145. This research serves as a foundation for tackling antibiotic resistance and developing innovative therapeutics for UTIs.

原文English
文章編號5679
期刊Molecules
29
發行號23
DOIs
出版狀態Published - 12月 2024

指紋

深入研究「Synergistic Effects of Pyrrosia lingua Caffeoylquinic Acid Compounds with Levofloxacin Against Uropathogenic Escherichia coli: Insights from Molecular Dynamics Simulations, Antibiofilm, and Antimicrobial Assessments」主題。共同形成了獨特的指紋。

引用此