Virtual data augmentation method for reaction prediction

Xinyi Wu, Yun Zhang, Jiahui Yu, Chengyun Zhang, Haoran Qiao, Yejian Wu, Xinqiao Wang, Zhipeng Wu, Hongliang Duan

研究成果: Article同行評審

7 引文 斯高帕斯(Scopus)

摘要

To improve the performance of data-driven reaction prediction models, we propose an intelligent strategy for predicting reaction products using available data and increasing the sample size using fake data augmentation. In this research, fake data sets were created and augmented with raw data for constructing virtual training models. Fake reaction datasets were created by replacing some functional groups, i.e., in the data analysis strategy, the fake data as compounds with modified functional groups to increase the amount of data for reaction prediction. This approach was tested on five different reactions, and the results show improvements over other relevant techniques with increased model predictivity. Furthermore, we evaluated this method in different models, confirming the generality of virtual data augmentation. In summary, virtual data augmentation can be used as an effective measure to solve the problem of insufficient data and significantly improve the performance of reaction prediction.

原文English
文章編號17098
期刊Scientific Reports
12
發行號1
DOIs
出版狀態Published - 12月 2022
對外發佈

指紋

深入研究「Virtual data augmentation method for reaction prediction」主題。共同形成了獨特的指紋。

引用此